

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for San Luis Obispo County, California, Paso Robles Area 7865 AIRPORT ROAD, PASO ROBLES, CA.

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means


for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	8
Map Unit Descriptions	8
San Luis Obispo County, California, Paso Robles Area	10
103—Arbuckle-Positas complex, 15 to 30 percent slopes	10
148—Hanford and Greenfield soils, 2 to 9 percent slopes	12
149—Hanford and Greenfield gravelly sandy loams, 0 to 2 percent	
slopes	14
166—Metz loamy sand, 0 to 5 percent slopes	16
167—Metz-Tujunga complex, occasionally flooded, 0 to 5 percent	
slopes	
212—Xerofluvents-Riverwash association	19
Soil Information for All Uses	
Suitabilities and Limitations for Use	21
Land Classifications	21
California Revised Storie Index (CA) (7965 AIRPORT ROAD STORIE	
INDEX)	21
California Revised Storie Index (CA) (7965 AIRPORT ROAD	
SUITABILITIES & amp; LIMITATIONS)	25
References	30

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit Clay Spot

36 \Diamond

Closed Depression

×

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip Sodic Spot

Spoil Area Stony Spot

å 0

Very Stony Spot

Ŷ

Wet Spot Other

Δ

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Luis Obispo County, California, Paso

Robles Area

Survey Area Data: Version 7, Sep 25, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 8, 2010—May 21, 2010

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

San Luis Obispo County, California, Paso Robles Area (CA665)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
103	Arbuckle-Positas complex, 15 to 30 percent slopes	8.8	18.0%			
148	Hanford and Greenfield soils, 2 to 9 percent slopes	11.2	23.0%			
149	Hanford and Greenfield gravelly sandy loams, 0 to 2 percent slopes	7.9	16.1%			
166	Metz loamy sand, 0 to 5 percent slopes	12.9	26.4%			
167	Metz-Tujunga complex, occasionally flooded, 0 to 5 percent slopes	6.7	13.7%			
212	Xerofluvents-Riverwash association	1.4	2.9%			
Totals for Area of Interest		48.9	100.0%			

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with

some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

San Luis Obispo County, California, Paso Robles Area

103—Arbuckle-Positas complex, 15 to 30 percent slopes

Map Unit Setting

National map unit symbol: hbrl Elevation: 600 to 1,500 feet

Mean annual precipitation: 12 to 20 inches Mean annual air temperature: 60 to 61 degrees F

Frost-free period: 200 days

Farmland classification: Not prime farmland

Map Unit Composition

Arbuckle and similar soils: 40 percent Positas and similar soils: 30 percent Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Arbuckle

Setting

Landform: Terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium from mixed rock sources

Typical profile

H1 - 0 to 29 inches: fine sandy loam H2 - 29 to 53 inches: sandy clay loam

H3 - 53 to 62 inches: stratified sandy loam to very gravelly sandy clay loam

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: Coarse loamy (R014XE003CA)

Description of Positas

Setting

Landform: Terraces

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium from mixed rock sources

Typical profile

H1 - 0 to 10 inches: coarse sandy loam

H2 - 10 to 28 inches: clay

H3 - 28 to 40 inches: sandy clay loam

H4 - 40 to 60 inches: stratified sandy loam to gravelly clay loam

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 9 to 20 inches to abrupt textural change

Natural drainage class: Well drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: Coarse loamy claypan (R014XE005CA)

Minor Components

Greenfield, fine sandy loam

Percent of map unit: 10 percent

Unnamed, similar to positas

Percent of map unit: 10 percent

Hanford, fine sandy loam

Percent of map unit: 5 percent

Ayar, silty clay

Percent of map unit: 2 percent

Nacimiento, silty clay loam

Percent of map unit: 1 percent

Balcom, loam

Percent of map unit: 1 percent

Shimmon, loam

Percent of map unit: 1 percent

148—Hanford and Greenfield soils, 2 to 9 percent slopes

Map Unit Setting

National map unit symbol: hbt1 Elevation: 600 to 1,500 feet

Mean annual precipitation: 12 to 20 inches Mean annual air temperature: 60 degrees F

Frost-free period: 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Hanford and similar soils: 40 percent Greenfield and similar soils: 30 percent

Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hanford

Setting

Landform: Terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed rock sources

Typical profile

H1 - 0 to 25 inches: fine sandy loam H2 - 25 to 60 inches: fine sandy loam

Properties and qualities

Slope: 2 to 9 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: Coarse loamy bottom (R014XE032CA)

Description of Greenfield

Setting

Landform: Terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed rock sources

Typical profile

H1 - 0 to 8 inches: fine sandy loam H2 - 8 to 54 inches: fine sandy loam

H3 - 54 to 60 inches: stratified very gravelly sand to sandy loam

Properties and qualities

Slope: 2 to 9 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: Coarse loamy bottom (R014XE032CA)

Minor Components

Arbuckle, fine sandy loam

Percent of map unit: 15 percent

San ysidro, loam

Percent of map unit: 10 percent

Metz, loamy sand

Percent of map unit: 1 percent

Rincon, clay loam

Percent of map unit: 1 percent

Pico, fine sandy loam

Percent of map unit: 1 percent

Tujunga, fine sand

Percent of map unit: 1 percent

Cropley, clay

Percent of map unit: 1 percent

149—Hanford and Greenfield gravelly sandy loams, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: hbt2 Elevation: 600 to 1,500 feet

Mean annual precipitation: 12 to 20 inches Mean annual air temperature: 60 degrees F

Frost-free period: 200 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Hanford and similar soils: 40 percent Greenfield and similar soils: 30 percent

Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hanford

Setting

Landform: Terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed rock sources

Typical profile

H1 - 0 to 25 inches: gravelly sandy loam H2 - 25 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: A

Ecological site: Coarse loamy bottom (R014XE032CA)

Description of Greenfield

Setting

Landform: Terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed rock sources

Typical profile

H1 - 0 to 8 inches: gravelly sandy loam H2 - 8 to 54 inches: gravelly sandy loam

H3 - 54 to 60 inches: stratified very gravelly sand to gravelly sandy loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: A

Ecological site: Coarse loamy bottom (R014XE032CA)

Minor Components

Arbuckle, loam

Percent of map unit: 15 percent

San ysidro, loam

Percent of map unit: 10 percent

Tujunga, fine sand

Percent of map unit: 1 percent

Cropley, clay

Percent of map unit: 1 percent

Pico, fine sandy loam

Percent of map unit: 1 percent

Metz, loamy sand

Percent of map unit: 1 percent

Rincon, clay loam

Percent of map unit: 1 percent

166—Metz loamy sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: hbtm Elevation: 600 to 1,500 feet

Mean annual precipitation: 12 to 20 inches Mean annual air temperature: 60 degrees F

Frost-free period: 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Metz and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Metz

Settina

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed rock sources; alluvium

Typical profile

H1 - 0 to 9 inches: loamy sand

H2 - 9 to 60 inches: stratified sand to very fine sandy loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Rare Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: A

Ecological site: Sandy bottom (R014XE033CA)

Minor Components

Hanford, fine sandy loam

Percent of map unit: 5 percent

Tujunga, fine sand

Percent of map unit: 5 percent

San emigdio, fine sandy loam

Percent of map unit: 5 percent

Elder, loam

Percent of map unit: 2 percent

Pico, fine sandy loam

Percent of map unit: 1 percent
Unnamed, slopes of 5 to 9 percent

Percent of map unit: 1 percent

Xerofluvents

Percent of map unit: 1 percent Landform: Drainageways

167—Metz-Tujunga complex, occasionally flooded, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: hbtn Elevation: 600 to 1,500 feet

Mean annual precipitation: 12 to 20 inches Mean annual air temperature: 60 degrees F

Frost-free period: 200 days

Farmland classification: Not prime farmland

Map Unit Composition

Metz and similar soils: 35 percent Tujunga and similar soils: 30 percent Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Metz

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed rock sources

Typical profile

H1 - 0 to 9 inches: loamy sand

H2 - 9 to 60 inches: stratified sand to very fine sandy loam

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Occasional Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: A

Ecological site: Sandy bottom (R014XE033CA)

Description of Tujunga

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from mixed rocks

Typical profile

H1 - 0 to 20 inches: fine sand H2 - 20 to 60 inches: sand

Properties and qualities

Slope: 0 to 5 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Occasional Frequency of ponding: None

Salinity, maximum in profile: Nonsaline (0.0 to 2.0 mmhos/cm) Available water storage in profile: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): 2w Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: A

Ecological site: Sandy wash (R014XE034CA)

Minor Components

Xerofluvents

Percent of map unit: 20 percent

Landform: Drainageways

Elder, loam

Percent of map unit: 2 percent

Unnamed, slopes of 5 to 9 percent

Percent of map unit: 1 percent

Pico, fine sandy loam

Percent of map unit: 1 percent

San emigdio, fine sandy loam

Percent of map unit: 1 percent

212—Xerofluvents-Riverwash association

Map Unit Setting

National map unit symbol: hbw3 Elevation: 600 to 1,500 feet

Mean annual precipitation: 12 to 20 inches Mean annual air temperature: 60 degrees F

Frost-free period: 200 days

Farmland classification: Not prime farmland

Map Unit Composition

Xerofluvents and similar soils: 50 percent

Riverwash: 30 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Xerofluvents

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Typical profile

H1 - 0 to 10 inches: sand

H2 - 10 to 30 inches: stratified gravel to sand to sandy loam H3 - 30 to 60 inches: stratified gravelly sand to gravelly loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Frequent Frequency of ponding: None

Interpretive groups

Land capability classification (irrigated): 6w Land capability classification (nonirrigated): 6w

Hydrologic Soil Group: A

Description of Riverwash

Setting

Landform: Channels

Typical profile

H1 - 0 to 6 inches: sand H2 - 6 to 60 inches: Error

Properties and qualities

Slope: 0 to 2 percent

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: About 0 to 24 inches

Frequency of flooding: Frequent

Interpretive groups

Land capability classification (irrigated): 8w Land capability classification (nonirrigated): 8w

Minor Components

Elder, loam

Percent of map unit: 7 percent

Metz, loamy sand

Percent of map unit: 7 percent

Tujunga, fine sand

Percent of map unit: 6 percent

Soil Information for All Uses

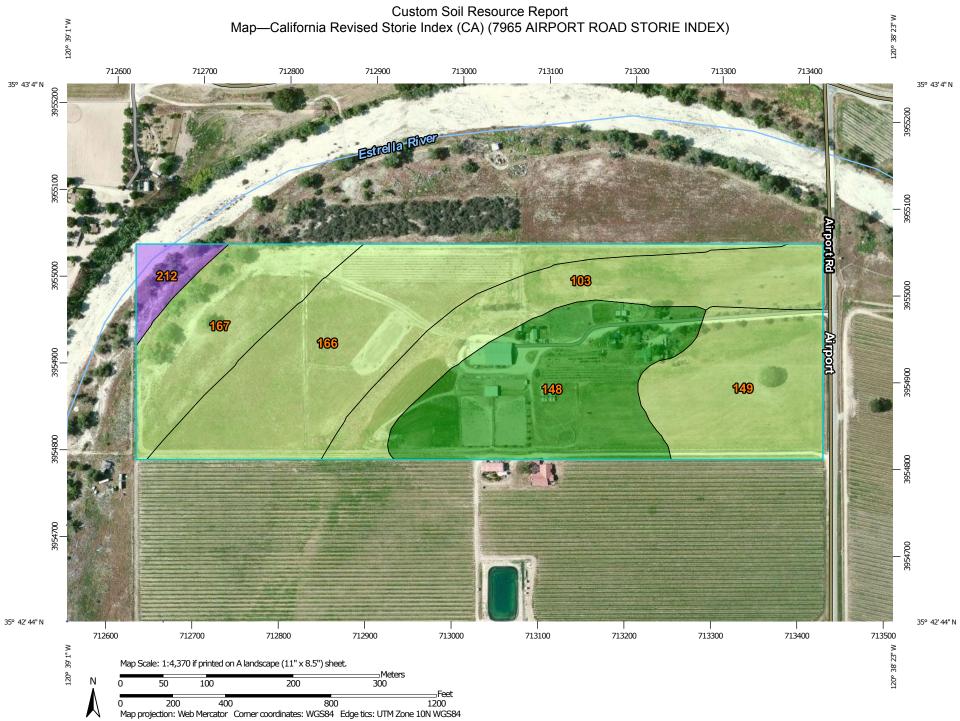
Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.

Land Classifications

Land Classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

California Revised Storie Index (CA) (7965 AIRPORT ROAD STORIE INDEX)


The Storie Index is a soil rating based on soil properties that govern a soil's potential for cultivated agriculture in California.

The Storie Index assesses the productivity of a soil from the following four characteristics: Factor A, degree of soil profile development; factor B, texture of the surface layer; factor C, slope; and factor X, manageable features, including drainage, microrelief, fertility, acidity, erosion, and salt content. A score ranging from 0 to 100 is determined for each factor, and the scores are then multiplied together to derive an index rating.

For simplification, Storie Index ratings have been combined into six grade classes as follows: Grade 1 (excellent), 81 to 100; grade 2 (good), 61 to 80; grade 3 (fair), 41 to 60; grade 4 (poor), 21 to 40; grade 5 (very poor), 11 to 20; and grade 6 (nonagricultural), 10 or less.

The components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as the one shown for the map unit. The percent composition of each component in a particular map unit is given to help the user better understand the extent to which the rating applies to the map unit.

Other components with different ratings may occur in each map unit. The ratings for all components, regardless the aggregated rating of the map unit, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.

Grade 5 - Very Poor

Not rated

Rails

US Routes

Major Roads

Local Roads

Grade 6 - Nonagricultural

Not rated or not available

Streams and Canals

Interstate Highways

Aerial Photography

MAP LEGEND

Water Features

Transportation

-

Background

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Rating Polygons

Grade 1 - Excellent

Grade 2 - Good

Grade 3 - Fair

Grade 4 - Poor

Grade 5 - Very Poor
Grade 6 - Nonagricultural

Not rated

Not rated or not available

Soil Rating Lines

Grade 1 - Excellent

Grade 2 - Good

Grade 3 - Fair

Grade 4 - Poor

Grade 5 - Very Poor

Grade 6 - Nonagricultural

Not rated

Not rated or not available

Soil Rating Points

Grade 1 - Excellent

Grade 2 - Good

Grade 3 - Fair

Grade 4 - Poor

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Luis Obispo County, California, Paso

Robles Area

Survey Area Data: Version 7, Sep 25, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 8, 2010—May 21, 2010

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—California Revised Storie Index (CA) (7965 AIRPORT ROAD STORIE INDEX)

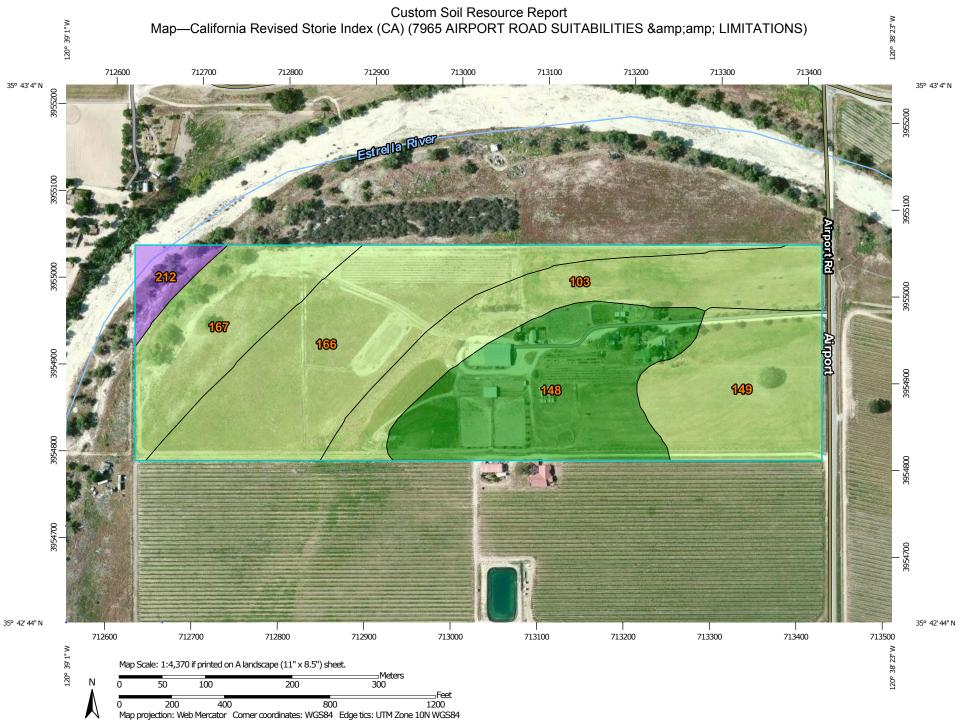
Map unit symbol	Map unit name	Rating	Component name (percent)	Acres in AOI	Percent of AOI
103	Arbuckle-Positas complex, 15 to 30 percent slopes	Grade 2 - Good	Arbuckle (40%)	8.8	18.0%
148 F	Hanford and Greenfield soils, 2 to 9 percent slopes	Grade 1 - Excellent	Hanford (40%)	11.2	23.0%
			Greenfield (30%)		
149 H	Hanford and Greenfield gravelly sandy loams, 0 to 2 percent slopes	Grade 2 - Good	Hanford (40%)	7.9	16.1%
			Greenfield (30%)		
166	Metz loamy sand, 0 to 5 percent slopes	Grade 2 - Good	Metz (80%)	12.9	26.4%
167	Metz-Tujunga complex, occasionally flooded, 0 to 5 percent slopes	Grade 2 - Good	Metz (35%)	6.7	13.7%
212	Xerofluvents- Riverwash association	Grade 3 - Fair	Xerofluvents (50%)	1.4	2.9%
Totals for Area of Interest				48.9	100.0%

Rating Options—California Revised Storie Index (CA) (7965 AIRPORT ROAD STORIE INDEX)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Lower

California Revised Storie Index (CA) (7965 AIRPORT ROAD SUITABILITIES & LIMITATIONS)


The Storie Index is a soil rating based on soil properties that govern a soil's potential for cultivated agriculture in California.

The Storie Index assesses the productivity of a soil from the following four characteristics: Factor A, degree of soil profile development; factor B, texture of the surface layer; factor C, slope; and factor X, manageable features, including drainage, microrelief, fertility, acidity, erosion, and salt content. A score ranging from 0 to 100 is determined for each factor, and the scores are then multiplied together to derive an index rating.

For simplification, Storie Index ratings have been combined into six grade classes as follows: Grade 1 (excellent), 81 to 100; grade 2 (good), 61 to 80; grade 3 (fair), 41 to 60; grade 4 (poor), 21 to 40; grade 5 (very poor), 11 to 20; and grade 6 (nonagricultural), 10 or less.

The components listed for each map unit in the accompanying Summary by Map Unit table in Web Soil Survey or the Aggregation Report in Soil Data Viewer are determined by the aggregation method chosen. An aggregated rating class is shown for each map unit. The components listed for each map unit are only those that have the same rating class as the one shown for the map unit. The percent composition of each component in a particular map unit is given to help the user better understand the extent to which the rating applies to the map unit.

Other components with different ratings may occur in each map unit. The ratings for all components, regardless the aggregated rating of the map unit, can be viewed by generating the equivalent report from the Soil Reports tab in Web Soil Survey or from the Soil Data Mart site. Onsite investigation may be needed to validate these interpretations and to confirm the identity of the soil on a given site.

Grade 5 - Very Poor

Not rated

Rails

US Routes

Major Roads

Local Roads

Grade 6 - Nonagricultural

Not rated or not available

Streams and Canals

Interstate Highways

Aerial Photography

MAP LEGEND

Water Features

Transportation

~

Background

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Rating Polygons

Grade 1 - Excellent

Grade 2 - Good

Grade 3 - Fair

Grade 4 - Poor

Grade 5 - Very Poor

Grade 6 - Nonagricultural

Not rated or not available

Not rated

Soil Rating Lines

Grade 1 - Excellent

Grade 2 - Good

Grade 3 - Fair

Grade 4 - Poor

Grade 5 - Very Poor

Grade 6 - Nonagricultural

Not rated

Not rated or not available

Soil Rating Points

Grade 1 - Excellent

Grade 2 - Good

Grade 3 - Fair

Grade 4 - Poor

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Luis Obispo County, California, Paso

Robles Area

Survey Area Data: Version 7, Sep 25, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 8, 2010—May 21, 2010

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—California Revised Storie Index (CA) (7965 AIRPORT ROAD SUITABILITIES & EMP; LIMITATIONS)

Map unit symbol	Map unit name	Rating	Component name (percent)	Acres in AOI	Percent of AOI
103	Arbuckle-Positas complex, 15 to 30 percent slopes	Grade 2 - Good	Arbuckle (40%)	8.8	18.0%
148 F	Hanford and Greenfield soils, 2 to 9 percent slopes	Grade 1 - Excellent	Hanford (40%)	11.2	23.0%
			Greenfield (30%)		
149 H	Hanford and Greenfield gravelly sandy loams, 0 to 2 percent slopes	Grade 2 - Good	Hanford (40%)	7.9	16.1%
			Greenfield (30%)		
166	Metz loamy sand, 0 to 5 percent slopes	Grade 2 - Good	Metz (80%)	12.9	26.4%
167	Metz-Tujunga complex, occasionally flooded, 0 to 5 percent slopes	Grade 2 - Good	Metz (35%)	6.7	13.7%
212	Xerofluvents- Riverwash association	Grade 3 - Fair	Xerofluvents (50%)	1.4	2.9%
Totals for Area of Interest				48.9	100.0%

Rating Options—California Revised Storie Index (CA) (7965 AIRPORT ROAD SUITABILITIES & DIMITATIONS)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Lower

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2 054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf