

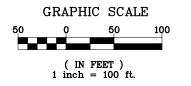
SOIL INTERPRETIVE DATA

Soil Units	Depth to Bedrock (in)	Depth to Seasonal High Water Table Indicators (in)	Slope Gradient (percent)	Recommended Trench Depth (in)	Estimated Perc Rate (min/in)	Recommended Hydraulic Loading Rate (gal/day/sq.ft.)	Soil Suit. Code
Norfolk	>72	50	2-6	18-24	60		U2
Faceville	>72	>72	2-6	18-36	60		A1

SOIL SUITABILITY CODE LEGEND

A1 Soils are typically suitable for conventional absorption field with proper design, installation and maintenance.

These soils contain a slowly permeable subsoil horizon which may cause short periods of soil saturation that could temporarily impede on-site system performance. Shallow trenches installed a minimum of 24" above this slowly permeable soil horizon should allow a conventional septic system with proper design, installation and maintenance to function effectively. Final system design and installation must be approved by the local environmental health specialist.


NOTES:

- Topographic information should be considered approximate.
- Terraces in the vicinity of absorption field construction should be graded out to improve surface water drainage.
- Soil boundary lines should be considered transitional zones between different soil conditions or series rather than an exact boundary.
- System installation should not occur under saturated or wet soil conditions
- Absorption fields should not be installed on concave slopes.
- Surface drainage should be diverted away from absorption field lines.
- Gutter downspouts should be discharged away from the vicinity of the on site wastewater system.
- Estimated percolation rates are based on full-sized system performance. However, no guarantee is given or implied as to the performance of any particular system installed.

MAP LEGEND				
	Soil Boundary			
<u></u> В1	Soil Boring			
7	Slope Direction			
mm	Gully			

(678) 262-4020 (678) 262-4024 (fax) www.soilmapping.com

LEVEL 3 SOIL MAP
TRACT 3
HIGHWAY 26 DEVELOPMENT
PARENT PARCEL # 001160 022000
HOUSTON COUNTY, GEORGIA

DATE: 3-22-23

SCALE: 1" = 100'

CLIENT: TIMBER MANAGEMENT, INC.

BORING LOCATION METHOD: TRIMBLE GEO 7X GPS

FIELD WORK BY: JBS

CHECKED BY: J. BRANDON STUART, DPH CSC, #438